Undergraduate at The University of Tokyo, studying Computer Science and Engineering
東京大学 工学部 電子情報工学科
My research areas include approximate nearest neighbor search and multimedia information retrieval.
for large-scale data and its acceleration.
Experienced other engineering fields such as quantization of DNN,
backend development, distributed system, Kubernetes, and MLOps. Also working on some OSS projects.
機械学習とコンピュータビジョン、特に大規模データに対する検索や、高速化を研究しています。
その他、MLOps, Kubernetes, DBMSにも興味があります。OSS活動にも取り組んでいます。
The University of Tokyo, Tokyo
Advisor : Lecturer (Assistant Professor) Yusuke Matsui, Prof. Kiyoharu Aizawa
指導教員 : 松井 勇佑 講師, 相澤 清晴 教授
Study : Approximate Nearest Neighbor Search, Efficient Multimedia Retrieval
Study : Approximate Nearest Neighbor Search, Efficient Multimedia Retrieval
GPA : 3.88 / 4.30
GPA : 3.88 / 4.30
M3, Inc., Tokyo, Part-time
エムスリー株式会社, Tokyo, Part-time
Working on the development of kannon, a new
OSS library for
parallel and distributed execution of gokart,
which is an OSS for machine learning pipelines, on Kubernetes.
I wrote an tech blog post introducing kannon library in
Japanese.
機械学習パイプラインのOSSであるgokartを、Kubernetes上で並列分散実行するための新しいOSSライブラリであるkannonの開発に取り組んでいます。
kannonの技術詳細を説明するブログ記事を書きました。
Preferred Networks Inc., Tokyo, 2 months, Full-time
Preferred Networks Inc., Tokyo, 2 months, Full-time
I worked to improve the accuracy of chemical plant dynamics prediction by integrating deep learning
and physical simulation.
I conducted an overall process from surveying previous research to examining the method, implementation,
evaluation,
and presentation of the results.
The output cannot be disclosed due to confidentiality.
The specific technologies used are as follows.
深層学習と物理シミュレーションを融合させることによる、化学プラントの挙動予測の精度向上に取り組みました。
先行研究の調査から、手法の検討、実装、評価、成果発表までを一貫して行いました。
成果は機密により公開できません
具体的な使用技術は次のとおりです.
FLYWHEEL Inc., Tokyo, 1 year, Part-time
FLYWHEEL Inc., Tokyo, 1 year, Part-time
Worked on backend development of search and recommendation systems using Kotlin and Python.
In particular, I was mainly involved in query analysis, API specification, implementation, and load
testing of
the search engine.
Elasticsearch was used to implement the search engine.
Kotlin, Pythonを用いた検索・推薦システムのバックエンド開発に取り組みました。
特に検索エンジンのクエリ解析、API仕様策定、実装、負荷試験に携わりました。
検索エンジンの実装にはElasticsearchを使用しました。
Fixstars Corporation, Tokyo, 1 month, Full-time
Fixstars Corporation, Tokyo, 1 month, Full-time
I worked on speeding up an open-sourced implementation of 3D reconstruction algorithms using parallel computation on NVIDIA GPUs,
achieving a speedup of about 11 times faster than the CPU implementation using CUDA.
The entire process, from catch-up to CUDA, bottleneck analysis using a profiler, implementation, and
evaluation,
was done in 15 days.
The detailed output cannot be disclosed due to confidentiality.
GPUによる並列計算を用いた、3次元再構成アルゴリズムの高速化に取り組みました。
CPU実装に比べて約11倍の高速化を達成しました。
CUDAへのcatch upからプロファイラを用いたボトルネック解析、実装、評価までを15日で一貫して行いました。
Tier IV, Inc, Tokyo, 1 year Part-time
Tier IV, Inc, Tokyo, 1 year, Part-time
I worked on the implementation of a pipeline for autonomous driving data in Python, especially for point
cloud data.
Also surveyed papers on object detection and worked on model acceleration using ONNX and TensorRT.
自動運転データ(特に点群)のためのパイプラインをPythonでの実装に取り組みました。
また、物体検出に関する論文のサーベイやONNX, TensorRTを用いたモデルの高速化に取り組みました。
Sora SUEGAMI†, Yutaro OGURI†, Zaiying ZHAO†, Yu KAGAYA†, Koki MUKAI, Shun YOSHIDA, Fu CHEN, & Toshihiko YAMASAKI
(2023).
"Self-Examination Mechanism: Improving Standard Accuracy in Adversarial Purification"
International Conference on Image, Video and Signal Processing (IVSP 2024). (†: equal contribution)
Sora SUEGAMI†, Yutaro OGURI†, Zaiying ZHAO†, Yu KAGAYA†, Koki MUKAI, Shun YOSHIDA, Fu CHEN, & Toshihiko YAMASAKI
(2023).
"Self-Examination Mechanism: Improving Standard Accuracy in Adversarial Purification"
International Conference on Image, Video and Signal Processing (IVSP 2024). (†: equal contribution)
Yutaro OGURI, & Yusuke MATSUI (2023).
"General and Practical Tuning Method for Off-the-Shelf Graph-Based Index: SISAP Indexing
Challenge Report by Team UTokyo"
International Conference on Similarity Search and Applications (SISAP 2023), 2023
Yutaro OGURI, & Yusuke MATSUI (2023).
"General and Practical Tuning Method for Off-the-Shelf Graph-Based Index: SISAP Indexing
Challenge Report by Team UTokyo"
International Conference on Similarity Search and Applications (SISAP 2023), 2023
Sora SUEGAMI†, Yutaro OGURI†, Zaiying ZHAO†, Yu KAGAYA†, Koki MUKAI, Shun YOSHIDA, Fu CHEN, & Toshihiko YAMASAKI
(2023).
"Self-Examination Mechanism: Lightweight Defense Mechanism against Adversarial Examples using Explainable AI."
Proceedings of the Annual Conference of JSAI, JSAI2023, 2A1GS203-2A1GS203. (†: equal contribution)
末神 奏宙†, 小栗 悠太郎†, 趙 在瀛†, 加賀谷 湧†, 向井 皇喜, 吉田 舜, 琛 付, & 山崎 俊彦 (2023). Self-Examination Mechanism: 説明可能AIを用いた敵対的攻撃に対する軽量な防御機構. 人工知能学会全国大会論文集, JSAI2023, 2A1GS203-2A1GS203. (†: equal contribution)
A library to execute data pipeline tasks on Kubernetes in a parallel and distributed manner with only minor
changes.
I'm the original author of this library and currently maintaining it.
I wrote an detailed article in Japanese.
I presented about the library at k8s novice Tokyo #24 and MLOps study group.
gokartのTaskをKubernetes上で並列・分散実行するためのライブラリです。ほんの少しのコードの変更だけで簡単にk8s上で並列分散化することができます。
日本語で詳細な解説記事を書きました。
k8s novice Tokyo #24 にて発表しました。
【Sansan×エムスリー】gokartで爆速開発!MLOps勉強会にて発表しました。
A simple debugger implemented in C using `ptrace` system call. It can attach to a process and display the
state of register.
I wrote a detailed explanation article in
Japanese.
ptraceシステムコールを用いた簡易的なデバッガを自作しました。C言語で実装されています。Breakpointにおけるレジスタの中身を見ることができます。
日本語で詳細な解説記事を書きました。
I implemented a new feature to CPython's List to make it more functional style.
I wrote a detailed explanation article in
Japanese.
This new feature enables to write code using Python's list like `list.map(func).filter(func).reduce(func)`.
It is a functional style usage of Python's list.
Gained hands-on experience with CPython's source code and got familiar with concepts of reference counting.
CPythonのListをより関数型的に扱うための新機能を実装しました。
日本語で詳細な解説記事を書きました。
A transpiler that converts a Python function into a C++ function.
A C compiler implemented in Rust that supports a subset of C.
Contributed to CuPy, a NumPy-compatible array library accelerated by CUDA.
A toy document DB implemented in Rust. It supports Elasticsearch-like queries.
Got 2nd place out of 7 teams at SISAP 2023 Indexing Challenge in multiple tracks,
which is a competition on Approximate Nearest Neighbor Search
held at 16th International Conference onSimilarity Search and Applications (SISAP 2023).
Here is a link to the, my blog post, and the paper on our solution, which is accepted to SISAP 2023.